LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Post-Deposition Annealing on the Structural Evolution and Optoelectronic Properties of In2O3:H Thin Films

Photo by austinchan from unsplash

An infrared transparent conductive material is a solution to realize the shielding function of infrared windows against electromagnetic waves, by combining the two characteristics of high transmission and conductivity in… Click to show full abstract

An infrared transparent conductive material is a solution to realize the shielding function of infrared windows against electromagnetic waves, by combining the two characteristics of high transmission and conductivity in infrared wavelengths. Indium-hydroxide-doped (In2O3:H) thin films were prepared by atomic layer deposition method, which can achieve high IR transmission by reducing the carrier concentration on the basis of ensuring the electrical properties. On this basis, the effect of the post-deposition annealing process on the microstructure evolution and optoelectronic properties of In2O3:H thin films was investigated in this paper. It is demonstrated that the carrier mobility after annealing is up to 90 cm2/(V·s), and the transmittance at the 4 μm is about 70%, meanwhile, the carrier concentration after annealing in air atmosphere is reduced to 1019 cm−3, with a transmission rate of up to 83% at 4 μm. The simulations visualize the shielding performance of the annealed In2O3:H thin film against radar electromagnetic waves. It provides a guideline for fabricating lightweight, thin, and multi-functional shielding infrared transparent materials in the key fields of spacecraft and high precision electronics.

Keywords: post deposition; deposition annealing; thin films; effect post; in2o3 thin

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.