LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Terahertz Wavefront Modulation Based on Phase Change Materials Embedded in Metasurface

Photo by rossfindon from unsplash

In the past decades, metasurfaces have shown their extraordinary abilities on manipulating the wavefront of electromagnetic wave. Based on the ability, various kinds of metasurfaces are designed to realize new… Click to show full abstract

In the past decades, metasurfaces have shown their extraordinary abilities on manipulating the wavefront of electromagnetic wave. Based on the ability, various kinds of metasurfaces are designed to realize new functional metadevices based on wavefront manipulations, such as anomalous beam steering, focus metalens, vortex beams generator, and holographic imaging. However, most of the previously proposed designs based on metasurfaces are fixed once design, which is limited for applications where light modulation needs to be tunable. In this paper, we proposed a design for THz tunable wavefront manipulation achieved by the combination of plasmonic metasurface and phase change materials (PCMs) in THz region. Here, we designed a metal-insulator-metal (MIM) metasurface with the typical C-shape split ring resonator (CSRR), whose polarization conversion efficiency is nearly 90% for circular polarized light (CPL) in the range of 0.95~1.15 THz when PCM is in the amorphous state, but the conversion efficiency turns to less than 10% in the same frequency range when PCM switches into the crystalline state. Then, benefiting from the high polarization conversion contrast of unit cell, we can achieve tunable wavefront manipulation by utilizing the Pancharatnam–Berry (PB) phase between the amorphous and crystalline states. As a proof-of-concept, the reflective tunable anomalous beam deflector and focusing metalens are designed and characterized, and the results further verify their capability for tunable wavefront manipulation in THz range. It is believed that the design in our work may pave the way toward the tunable wavefront manipulation of THz waves and is potential for dynamic tunable THz devices.

Keywords: thz; wavefront manipulation; phase change; tunable wavefront; metasurface

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.