LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanohydrodynamic Local Compaction and Nanoplasmonic Form-Birefringence Inscription by Ultrashort Laser Pulses in Nanoporous Fused Silica

Photo from wikipedia

The inscription regimes and formation mechanisms of form-birefringent microstructures inside nano-porous fused silica by tightly focused 1030- and 515-nm ultrashort laser pulses of variable energy levels and pulsewidths in the… Click to show full abstract

The inscription regimes and formation mechanisms of form-birefringent microstructures inside nano-porous fused silica by tightly focused 1030- and 515-nm ultrashort laser pulses of variable energy levels and pulsewidths in the sub-filamentary regime were explored. Energy-dispersion X-ray micro-spectroscopy and 3D scanning confocal Raman micro-spectroscopy revealed the micro-tracks compacted by the multi-shot laser exposure with the nanopores hydrodynamically driven on a microscale to their periphery. Nearly homogeneous polarimetrically acquired subwavelength-scale form-birefringence (refractive index modulation ~10−3) was simultaneously produced as birefringent nanogratings inside the microtracks of wavelength-, energy- and pulsewidth-dependent lengths, enabling the scaling of their total retardance for perspective phase-modulation nanophotonic applications. The observed form-birefringence was related to the hierarchical multi-scale structure of the microtracks, envisioned by cross-sectional atomic-force microscopy and numerical modeling.

Keywords: spectroscopy; form birefringence; ultrashort laser; fused silica

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.