The goal of this research is to synthesize and characterize Fe3O4@Chitosan-AgNP nanocomposites in order to determine their antibacterial activity. The research methods include the synthesis of Fe3O4@Chitosan-AgNP nanocomposites, as well… Click to show full abstract
The goal of this research is to synthesize and characterize Fe3O4@Chitosan-AgNP nanocomposites in order to determine their antibacterial activity. The research methods include the synthesis of Fe3O4@Chitosan-AgNP nanocomposites, as well as the characterization of nanoparticles using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) analysis, and subsequent antibacterial activity tests. The study’s findings demonstrated the successful synthesis of Fe3O4@Chitosan-AgNP nanocomposites, followed by nanoparticle characterization using SEM, TEM, XRD, and FTIR. Based on the XRD results, the conjugation of Fe3O4@Chitosan-AgNP nanocomposites has been successfully formed, as evidenced by the appearance of characteristic peaks of Fe3O4, chitosan, and AgNPs. According to the FTIR results, the interaction between chitosan-AgNPs and conjugated Fe3O4 occurred via the N atom in the NH2 group and the O atom in the OH group, and C=O. The SEM and TEM images also show that the Fe3O4@Chitosan-AgNP conjugation is a nanoparticle-based composite material. The combination of nanocomposites Fe3O4@Chitosan-AgNPs has antibacterial activity, inhibiting the growth of bacteria such as Bacillus cereus and Escherichia coli.
               
Click one of the above tabs to view related content.