Vertical stacking of two-dimensional (2D) homo- and heterostructures are intriguing research objects, as they are essential for fundamental studies and a key towards 2D device applications. It is paramount to… Click to show full abstract
Vertical stacking of two-dimensional (2D) homo- and heterostructures are intriguing research objects, as they are essential for fundamental studies and a key towards 2D device applications. It is paramount to understand the interlayer coupling in 2D materials and to find a fast yet precise characteristic signature. In this work, we report on a Raman fingerprint of interlayer coupling in 2D transition metal dichalcogenides (TMDCs). We observed that the out-of-plane B2g vibrational mode is absent when two monolayers form a vertical stack yet remain uncoupled but emerges after strong coupling. Using systematic Raman, photoluminescence (PL), and atomic force microscopy (AFM) studies of WSe2/WSe2 homo-bilayers and MoSe2/WSe2 hetero-bilayers, we conclude that the B2g vibrational mode is a distinct Raman fingerprint of interlayer coupling in 2D TMDCs. Our results propose an easy, fast, precise, and reliable measure to evaluate the interlayer coupling in 2D TMDCs.
               
Click one of the above tabs to view related content.