LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NiO-Based Aerogels—Unexpected Formation of Metallic Nickel Nanoparticles during Supercritical Drying Process

Photo from wikipedia

The aim of the study is to investigate the influence of the solvents applied both in sol–gel process and for supercritical drying (SCD) on NiO aerogels’ properties. NiO aerogels were… Click to show full abstract

The aim of the study is to investigate the influence of the solvents applied both in sol–gel process and for supercritical drying (SCD) on NiO aerogels’ properties. NiO aerogels were synthesized using methanol and 2-methoxy-ethanol (MeGl) as sol solvents. SCD was performed using iso-propanol, methanol and tert-butyl-methyl ether as supercritical fluids. The obtained samples were characterized using low-temperature nitrogen adsorption, X-ray diffraction analysis, mass-spectra analysis and STEM and TEM methods. It was found that specific surface area and the phase and chemical composition strongly depend on the synthesis conditions. We revealed that Ni2+ cations were reduced into Ni0 when 2-methoxy-ethanol was applied as a sol solvent. The mechanism of the Ni2+ cations reduction is proposed. We consider that at the stage of sol preparation, the Ni2+–MeGl chelate was formed. This chelate decomposes at the SCD stage with the release of MeGl, which, in turn, eliminates methanol and leads to the formation of aldehyde. The latter is responsible for the nickel reduction. The proposed mechanism was confirmed experimentally.

Keywords: based aerogels; nio based; formation; supercritical drying; process; aerogels unexpected

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.