LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase-Controllable Chemical Vapor Deposition Synthesis of Atomically Thin MoTe2

Photo by scentspiracy from unsplash

Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H… Click to show full abstract

Two-dimensional (2D) molybdenum telluride (MoTe2) is attracting increasing attention for its potential applications in electronic, optoelectronic, photonic and catalytic fields, owing to the unique band structures of both stable 2H phase and 1T′ phase. However, the direct growth of high-quality atomically thin MoTe2 with the controllable proportion of 2H and 1T′ phase seems hard due to easy phase transformation since the potential barrier between the two phases is extremely small. Herein, we report a strategy of the phase-controllable chemical vapor deposition (CVD) synthesis for few-layer (<3 layer) MoTe2. Besides, a new understanding of the phase-controllable growth mechanism is presented based on a combination of experimental results and DFT calculations. The lattice distortion caused by Te vacancies or structural strain might make 1T′-MoTe2 more stable. The conditions for 2H to 1T′ phase conversion are determined to be the following: Te monovacancies exceeding 4% or Te divacancies exceeding 8%, or lattice strain beyond 6%. In contrast, sufficient Te supply and appropriate tellurization velocity are essential to obtaining the prevailing 2H-MoTe2. Our work provides a novel perspective on the preparation of 2D transition metal chalcogenides (TMDs) with the controllable proportion of 2H and 1T′ phase and paves the way to their subsequent potential application of these hybrid phases.

Keywords: atomically thin; controllable chemical; thin mote2; phase controllable; phase; mote2

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.