LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering

Photo by diabetesmagazijn from unsplash

In this paper, Cu nanocolumnar structure electrodes are synthetized using a clean and easy-to-scale-up direct-current magnetron sputtering (DC-MS) technique for non-enzymatic glucose sensing. The nanocolumnar structure increases the active surface… Click to show full abstract

In this paper, Cu nanocolumnar structure electrodes are synthetized using a clean and easy-to-scale-up direct-current magnetron sputtering (DC-MS) technique for non-enzymatic glucose sensing. The nanocolumnar structure increases the active surface area of the deposit, with the nanocolumns showing a mean size diameter of 121.0 nm ± 27.2 and a length of 2.52 µm ± 0.23. A scanning transmission electron (STEM) analysis shows the presence of Cu and a small amount of Cu2O. The behavior of the electrodes in alkaline environments and the electrochemical affinity of the Cu nanocolumns (CuNCs) towards the electro-oxidation of glucose are investigated using cyclic voltammetry (CV). After performing CV in NaOH solution, the columnar structures present corrosion products containing Cu2O, as revealed by STEM and X-ray diffraction (XRD) analyses. The amperometric responses of the CuNCs to the successive addition of glucose show a linear range up to 2 mM and a limit of detection of 5.2 µM. Furthermore, the electrodes are free from chloride poisoning, and they are insensitive to dopamine, uric acid, ascorbic acid, and acetaminophen at their physiological concentrations.

Keywords: enzymatic glucose; direct current; current magnetron; magnetron sputtering; non enzymatic

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.