Complex asymmetric synthesis can be realized by the chiral induction of amino acids in nature. It is of great significance to design a new biomimetic catalytic system for asymmetric synthesis.… Click to show full abstract
Complex asymmetric synthesis can be realized by the chiral induction of amino acids in nature. It is of great significance to design a new biomimetic catalytic system for asymmetric synthesis. In this context, we report the preparation and characterization of the composite of polyacrylonitrile fiber (PANF) and metal-organic framework to catalyze the chiral synthesis of propargylamines. A confined microenvironment is established with N-heterocyclic carbene (NHC) silver complex-supported PANF and D-proline-encapsulated MIL-101(Cr). This novel supported catalyst demonstrated high activity in addition to excellent stereoselectivity in the three-component reaction between alkynes, aldehydes, and amines (A3). The regeneration can be realized by adsorption of D-proline again when the stereoselectivity decreases after recycle uses. By regulating the confined microenvironment on the composite, the activity and selectivity of the catalytic system are improved with turnover numbers of up to 2800 and 98% ee. The biomimetic catalytic system to A3 coupling reaction is systematically studied, and the synergistic catalytic mechanism between NHC-Ag and D-proline in the confined microenvironment is revealed.
               
Click one of the above tabs to view related content.