LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+

Photo by wiola3001 from unsplash

LEDs for plant lighting have attracted wide attention and phosphors with good stability and deep-red emission are urgently needed. Novel Cr3+ and Dy3+ co-doped Gd3Al4GaO12 garnet (GAGG) phosphors were successfully… Click to show full abstract

LEDs for plant lighting have attracted wide attention and phosphors with good stability and deep-red emission are urgently needed. Novel Cr3+ and Dy3+ co-doped Gd3Al4GaO12 garnet (GAGG) phosphors were successfully prepared through a conventional solid-state reaction. Using blue LEDs, a broadband deep-red emission at 650–850 nm was obtained due to the Cr3+ 4T2 → 4A2 transition. When the Cr3+ concentration was fixed to 0.1 mol, the crystal structure did not change with an increase in the Dy3+ doping concentration. The luminous intensity of the optimized GAGG:0.1Cr3+, 0.01Dy3+ was 1.4 times that of the single-doped GAGG:0.1Cr3+. Due to the energy transfer from Dy3+ to Cr3+, the internal quantum efficiency reached 86.7%. The energy transfer from Dy3+ to Cr3+ can be demonstrated through luminescence spectra and fluorescence decay. The excellent properties of the synthesized phosphor indicate promising applications in the agricultural industry.

Keywords: enhanced photoluminescence; cr3; dy3; photoluminescence gd3al4gao12; energy; gd3al4gao12 cr3

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.