LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells

Photo from wikipedia

Rapid development of the device performance of organic-inorganic lead halide perovskite solar cells (PSCs) are emerging as a promising photovoltaic technology. Current world-record efficiency of PSCs is based on tin… Click to show full abstract

Rapid development of the device performance of organic-inorganic lead halide perovskite solar cells (PSCs) are emerging as a promising photovoltaic technology. Current world-record efficiency of PSCs is based on tin oxide (SnO2) electron transport layers (ETLs), which are capable of being processed at low temperatures and possess high carrier mobilities with appropriate energy- band alignment and high optical transmittance. Modification of SnO2 has been intensely investigated by various approaches to tailor its conductivity, band alignment, defects, morphology, and interface properties. This review article organizes recent developments of modifying SnO2 ETLs to PSC advancement using surface and bulk modifications, while concentrating on photovoltaic (PV) device performance and long-term stability. Future outlooks for SnO2 ETLs in PSC research and obstacles remaining for commercialization are also discussed.

Keywords: sno2; solar cells; electron transport; sno2 electron; modification sno2; perovskite solar

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.