It is of great importance to promote charge separation in photocatalysts for enhanced photocatalytic activity under visible light irradiation. In this work, a type-II heterostructured photocatalyst was constructed by compositing… Click to show full abstract
It is of great importance to promote charge separation in photocatalysts for enhanced photocatalytic activity under visible light irradiation. In this work, a type-II heterostructured photocatalyst was constructed by compositing phosphorus-doped g-C3N4 (P-CN) and Rh-doped SrTiO3 (Rh-STO) via a thermal calcination treatment. A series of characterizations were conducted to investigate the structure of heterostructured P-CN/Rh-STO. It was found that Rh-STO interacted with in situ generated P atoms from the decomposition of P-CN during the calcination process, thus leading to the formation of heterojunction of P-CN/Rh-STO. Compared with the single component, i.e., P-CN or Rh-STO, the obtained P-CN/Rh-STO showed superior photocatalytic activity to that of both P-CN and Rh-STO due to the effective charge separation across the heterojunction between P-CN and Rh-STO.
               
Click one of the above tabs to view related content.