Natural plant essential oils cannot be applied on a large scale due to their high volatility, easy deactivation, etc. This study provides a new method to prepare a long-lasting, slow-release… Click to show full abstract
Natural plant essential oils cannot be applied on a large scale due to their high volatility, easy deactivation, etc. This study provides a new method to prepare a long-lasting, slow-release essential oil product by taking advantage of solid lipid nanoparticles, which will provide a scientific guideline for the future essential oil industry. In this article, solid lipid cinnamaldehyde nanoparticles were prepared using an ultrahigh-pressure homogenization method. SLN-CA with a particle size of 74 ± 5 nm, PDI of 0.153 ± 0.032, and zeta potential of −44.36 ± 2.2 mV was screened using an additional amount of cinnamaldehyde, the ratio of oil phase components, and the homogenization pressure and number of times as factors. Differential thermal analysis and spectroscopy demonstrated that cinnamaldehyde was successfully encapsulated inside the nanoparticles. The change in particle size of nanoparticles under different conditions and times was used as an indicator of stability. The stability of the finished nanoparticles was evaluated. The retention and slow-release ability of cinnamaldehyde were investigated using the concentration of cinnamaldehyde in nanoparticles as an indicator. The results showed that after 15 days, SLN-CA retained 52.36% of the concentration from 15 days prior. The bacterial inhibition test shows that SLN-CA can inhibit bacteria
               
Click one of the above tabs to view related content.