LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of cBN-hBN-SiCw Nanocomposite with Superior Hardness, Strength, and Toughness

Photo by iamthedave from unsplash

Nanocomposites with one-dimensional (1D) and two-dimensional (2D) phases can demonstrate superior hardness, fracture toughness, and flexural strength. Cubic boron nitride-hexagonal boron nitride-silicon carbide whiskers (cBN-hBN-SiCw) nanocomposites with the simultaneous containing… Click to show full abstract

Nanocomposites with one-dimensional (1D) and two-dimensional (2D) phases can demonstrate superior hardness, fracture toughness, and flexural strength. Cubic boron nitride-hexagonal boron nitride-silicon carbide whiskers (cBN-hBN-SiCw) nanocomposites with the simultaneous containing 1D SiCw and 2D hBN phases were successfully fabricated via the high-pressure sintering of a mixture of SiCw and cBN nanopowders. The hBN was generated in situ via the limited phase transition from cBN to hBN. Nanocomposites with 25 wt.% SiCw exhibited optimal comprehensive mechanical properties with Vickers hardness of 36.5 GPa, fracture toughness of 6.2 MPa·m1/2, and flexural strength of 687.4 MPa. Higher SiCw contents did not significantly affect the flexural strength but clearly decreased the hardness and toughness. The main toughening mechanism is believed to be a combination of hBN inter-layer sliding, SiCw pull-out, crack deflection, and crack bridging.

Keywords: strength; superior hardness; sicw; toughness; cbn hbn

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.