LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tracing the Si Dangling Bond Nanopathway Evolution ina-SiNx:H Resistive Switching Memory by the Transient Current

Photo from wikipedia

With the big data and artificial intelligence era coming, SiNx-based resistive random-access memories (RRAM) with controllable conductive nanopathways have a significant application in neuromorphic computing, which is similar to the… Click to show full abstract

With the big data and artificial intelligence era coming, SiNx-based resistive random-access memories (RRAM) with controllable conductive nanopathways have a significant application in neuromorphic computing, which is similar to the tunable weight of biological synapses. However, an effective way to detect the components of conductive tunable nanopathways in a-SiNx:H RRAM has been a challenge with the thickness down-scaling to nanoscale during resistive switching. For the first time, we report the evolution of a Si dangling bond nanopathway in a-SiNx:H resistive switching memory can be traced by the transient current at different resistance states. The number of Si dangling bonds in the conducting nanopathway for all resistive switching states can be estimated through the transient current based on the tunneling front model. Our discovery of transient current induced by the Si dangling bonds in the a-SiNx:H resistive switching device provides a new way to gain insight into the resistive switching mechanism of the a-SiNx:H RRAM in nanoscale.

Keywords: sinx resistive; switching memory; resistive switching; dangling bond; transient current; bond nanopathway

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.