LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Controllable Ratio of the Polyaniline-Needle-Shaped Manganese Dioxide for the High-Performance Supercapacitor Application

Photo from wikipedia

The nanohybrid development of metal oxide/conducting polymer as an energy storage material is an active research area, because of the device stability, conductive behavior, and easy fabrication. Herein, needle-like MnO2… Click to show full abstract

The nanohybrid development of metal oxide/conducting polymer as an energy storage material is an active research area, because of the device stability, conductive behavior, and easy fabrication. Herein, needle-like MnO2 was coupled with polyaniline fabricated through chemical polymerization followed by the hydrothermal process. The characterization results show that MnO2/polyaniline exhibited a needle-like morphology. Different characterization techniques such as X-ray diffraction patterns and scanning electron microscopy confirmed the formation of the MnO2/polyaniline nanohybrids. The electrochemical performance, including cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), specific capacitance (Csp), and cyclic stability, was examined using a three-electrode assembly cell. The optimized electrode displayed a Csp of 522.20 F g−1 at a current load of 1.0 A g−1 compared with the other electrodes. The developed synergism during MnO2/polyaniline fabrication provided enhanced conductive channels and stability during the charge–discharge process.

Keywords: polyaniline; mno2 polyaniline; performance; polyaniline needle; controllable ratio; ratio polyaniline

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.