LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards Efficient Electrically-Driven Deep UVC Lasing: Challenges and Opportunities

Photo from wikipedia

The major issues confronting the performance of deep-UV (DUV) laser diodes (LDs) are reviewed along with the different approaches aimed at performance improvement. The impact of threading dislocations on the… Click to show full abstract

The major issues confronting the performance of deep-UV (DUV) laser diodes (LDs) are reviewed along with the different approaches aimed at performance improvement. The impact of threading dislocations on the laser threshold current, limitations on heavy n- and p-doping in Al-rich AlGaN alloys, unavoidable electron leakage into the p-layers of (0001) LD structures, implementation of tunnel junctions, and non-uniform hole injection into multiple quantum wells in the active region are discussed. Special attention is paid to the current status of n- and p-type doping and threading dislocation density reduction, both being the factors largely determining the performance of DUV-LDs. It is shown that most of the above problems originate from intrinsic properties of the wide-bandgap AlGaN semiconductors, which emphasizes their fundamental role in the limitation of deep-UV LD performance. Among various remedies, novel promising technological and design approaches, such as high-temperature face-to-face annealing and distributed polarization doping, are discussed. Whenever possible, we provided a comparison between the growth capabilities of MOVPE and MBE techniques to fabricate DUV-LD structures.

Keywords: electrically driven; driven deep; efficient electrically; towards efficient; deep uvc; performance

Journal Title: Nanomaterials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.