LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and Optimization of Sensitivity and Creep for Multi-Component Sensing Materials

Photo from wikipedia

Pressure sensors urgently need high-performance sensing materials in order to be developed further. Sensitivity and creep are regarded as two key indices for assessing a sensor’s performance. For the design… Click to show full abstract

Pressure sensors urgently need high-performance sensing materials in order to be developed further. Sensitivity and creep are regarded as two key indices for assessing a sensor’s performance. For the design and optimization of sensing materials, an accurate estimation of the impact of several parameters on sensitivity and creep is essential. In this study, sensitivity and creep were predicted using the response surface methodology (RSM) and support vector regression (SVR), respectively. The input parameters were the concentrations of nickel (Ni) particles, multiwalled carbon nanotubes (MWCNTs), and multilayer graphene (MLG), as well as the magnetic field intensity (B). According to statistical measures, the SVR model exhibited a greater level of predictability and accuracy. The non-dominated sorting genetic-II algorithm (NSGA-II) was used to generate the Pareto-optimal fronts, and decision-making was used to determine the final optimal solution. With these conditions, the optimized results revealed an improved performance compared to the earlier study, with an average sensitivity of 0.059 kPa−1 in the pressure range of 0–16 kPa and a creep of 0.0325, which showed better sensitivity in a wider range compared to previous work. The theoretical sensitivity and creep were relatively similar to the actual values, with relative deviations of 0.317% and 0.307% after simulation and experimental verification. Future research for transducer performance optimization can make use of the provided methodology because it is representative.

Keywords: sensitivity; methodology; sensing materials; sensitivity creep; optimization; performance

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.