LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Centrifugal-Force-Driven Nano-Replication Strategy

Photo from wikipedia

The replication of nano-patterns is a significant means of nanomanufacturing. However, there is still a dearth of nano-replication methods that meet the requirements of both high precision and low cost.… Click to show full abstract

The replication of nano-patterns is a significant means of nanomanufacturing. However, there is still a dearth of nano-replication methods that meet the requirements of both high precision and low cost. Therefore, a new strategy to achieve the replication of nano-patterns, namely centrifugal-force-driven nano-replication (CFDNR), is proposed here. An easily obtained centrifugal force which is perpendicular to the plane of a nanostructured template is designed as a driving power, to compel the dynamic polymer to fully fill the space of the template; then, the nano-pattern can be replicated on a polymer film. Anodic aluminum oxide (AAO) templates with nanohole periods of ~450 nm and ~100 nm were employed as the original masters to investigate the nano-replication behaviors. The results of morphology measurements demonstrate excellent precision. The size deviations between the nanohole in the template and the nanopillar on the polymer film are less than 4%. Furthermore, a vacuum-assisted CFDNR scheme is proposed to prevent the formation of cavitation on the polymer replica. This work provides new possibilities and choices for facile, inexpensive and high-precision nanomanufacturing.

Keywords: force driven; replication; nano replication; centrifugal force; driven nano

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.