LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Photoresponse in a Two-Dimensional Superconducting Heterostructure

Photo from wikipedia

The photo-induced superconducting phase transition is widely used in probing the physical properties of correlated electronic systems and to realize broadband photodetection with extremely high responsivity. However, such photoresponse is… Click to show full abstract

The photo-induced superconducting phase transition is widely used in probing the physical properties of correlated electronic systems and to realize broadband photodetection with extremely high responsivity. However, such photoresponse is usually insensitive to electrostatic doping due to the high carrier density of the superconductor, restricting its applications in tunable optoelectronic devices. In this work, we demonstrate the gate voltage modulation to the photoresponsivity in a two-dimensional NbSe2-graphene heterojunction. The superconducting critical current of the NbSe2 relies on the gate-dependent hot carrier generation in graphene via the Joule heating effect, leading to the observed shift of both the magnitude and peak position of the photoresponsivity spectra as the gate voltage changes. This heating effect is further confirmed by the temperature and laser-power-dependent characterization of the photoresponse. In addition, we investigate the spatially-resolved photocurrent, finding that the superconductivity is inhomogeneous across the junction area. Our results provide a new platform for designing tunable superconducting photodetector and indicate that the photoresponse could be a powerful tool in studying the local electronic properties and phase transitions in low-dimensional superconducting systems.

Keywords: dimensional superconducting; two dimensional; photoresponse two; superconducting heterostructure; tunable photoresponse

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.