LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent

In this work, MnZn ferrite nanoparticles with hierarchical morphology were synthesized hydrothermally, and their surface characteristics were improved by the PEGylation process. In vitro MRI studies were also conducted to… Click to show full abstract

In this work, MnZn ferrite nanoparticles with hierarchical morphology were synthesized hydrothermally, and their surface characteristics were improved by the PEGylation process. In vitro MRI studies were also conducted to evaluate the ability of the synthesized nanoparticles as a contrast agent. All results were compared with those obtained for MnZn ferrite nanoparticles with normal structure. Microstructural evaluations showed that in ferrite with hierarchical morphology, the spherical particles with an average size of ~20 nm made a distinctive structure consisting of rows of nanoparticles which is a relatively big assembly like a dandelion. The smaller particle size and dandelion-like morphology led to an increase in specific surface area for the hierarchical structure (~69 m2/g) in comparison to the normal one (~30 m2/g) with an average particle size of ~40 nm. In vitro MRI, cytotoxicity and hemocompatibility assays confirmed the PEG-coated MnZn ferrite nanoparticles with hierarchical structure synthesized in the current study can be considered as an MRI contrast agent.

Keywords: contrast agent; structure; hierarchical structure; nanoparticles hierarchical; ferrite nanoparticles; mnzn ferrite

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.