The main objective of this work is to recycle unwanted industrial waste in order to produce innovative nanocomposites with improved mechanical, tribological, and thermal properties for use in various industrial… Click to show full abstract
The main objective of this work is to recycle unwanted industrial waste in order to produce innovative nanocomposites with improved mechanical, tribological, and thermal properties for use in various industrial purposes. In this context, powder metallurgy (PM) technique was used to fabricate iron (Fe)/copper (Cu)/niobium carbide (NbC)/granite nanocomposites having outstanding mechanical, wear and thermal properties. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) examinations were used to investigate the particle size, crystal size, and phase composition of the milled samples. Additionally, it was investigated how different volume percentages of the NbC and granite affected the sintered specimens in terms of density, microstructure, mechanical and wear properties, and coefficient of thermal expansion (CTE). According to the findings, the milled powders included particles that were around 55 nm in size and clearly contained agglomerates. The results showed that the addition of 4 vol.% NbC and 8 vol.% granite nanoparticles caused a reduction in the Fe–Cu alloy matrix particle sizes up to 47.8 nm and served as a barrier to the migration of dislocations. In addition, the successive increase in the hybrid concentrations led to a significant decrease in the crystal size of the samples prepared as follows: 29.73, 27.58, 22.69, 19.95 and 15.8 nm. Furthermore, compared with the base Fe–Cu alloy, the nanocomposite having 12 vol.% of hybrid reinforcement demonstrated a significant improvement in the microhardness, ultimate strength, Young’s modulus, longitudinal modulus, shear modulus, bulk modulus, CTE and wear rate by 94.3, 96.4, 61.1, 78.2, 57.1, 73.6, 25.6 and 61.9%, respectively. This indicates that both NbC and granite can actually act as excellent reinforcements in the Fe alloy.
               
Click one of the above tabs to view related content.