LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Electrochemical Performance of High Voltage LiNi0.5Mn1.5O4 Cathode Materials by Surface Modification with Li1.3Al0.3Ti1.7(PO4)3/C

Photo by diana_pole from unsplash

A novel method for surface modification of LiNi0.5Mn1.5O4 (LNMO) was proposed, in which a hybrid layer combined by Li1.3Al0.3Ti1.7(PO4)3 (LATP) and carbon (C) composite on LNMO material were connected by… Click to show full abstract

A novel method for surface modification of LiNi0.5Mn1.5O4 (LNMO) was proposed, in which a hybrid layer combined by Li1.3Al0.3Ti1.7(PO4)3 (LATP) and carbon (C) composite on LNMO material were connected by lithium iodide. Structure and morphology analyses illustrated that a higher contact area of active substances was achieved by the LATP/C composite layer without changing the original crystal structure of LNMO. XPS analysis proved that I− promoted the reduction of trace Mn4+, resulting in a higher ion conductivity. Galvanostatic charge–discharge tests exhibited the capacity of the LNMO with 5% LATP/C improved with 35.83% at 25 °C and 95.77% at 50 °C, respectively, compared with the bare after 100 cycles, implying the modification of high-temperature deterioration. EIS results demonstrated that one order of magnitude of improvement of the lithium-ion diffusion coefficient of LATP/C-LNMO was achieved (3.04 × 10−11 S cm−1). In conclusion, the effective low-temperature modification strategy improved the ionic and electronic conductivities of the cathode and suppressed the side reactions of high-temperature treatment.

Keywords: modification; 3al0 3ti1; li1 3al0; 5mn1 5o4; lini0 5mn1; surface modification

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.