LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transverse Magnetic Surface Plasmons in Graphene Nanoribbon Qubits: The Influence of a VO2 Substrate

Photo from wikipedia

We study the influence of the phase-change material VO2 on transverse magnetic (TM) surface plasmon (SP) modes in metallic arm-chair graphene nanoribbon (AGNR) qubits in the Lindhard approximation. We assess… Click to show full abstract

We study the influence of the phase-change material VO2 on transverse magnetic (TM) surface plasmon (SP) modes in metallic arm-chair graphene nanoribbon (AGNR) qubits in the Lindhard approximation. We assess the effects of temperature as a dynamic knob for the transition from the insulating to the metallic phase on the TM SP modes in single-band (SB) and two-band (TB) transitions. We show that a VO2 substrate leads to TM SP modes in both SB and TB transitions. In addition, we observe that the SP modes have a lower frequency than those for a substrate of constant permittivity. In addition, we study the influence of the substrate-induced band gap Δ′ on SP modes in TB transitions for the insulating and metallic phases of VO2.

Keywords: magnetic surface; influence; vo2 substrate; substrate; transverse magnetic; graphene nanoribbon

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.