LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation

Recently, the use of semiconductor-based photocatalytic technology as an effective way to mitigate the environmental crisis attracted considerable interest. Here, the S-scheme BiOBr/CdS heterojunction with abundant oxygen vacancies (Vo-BiOBr/CdS) was… Click to show full abstract

Recently, the use of semiconductor-based photocatalytic technology as an effective way to mitigate the environmental crisis attracted considerable interest. Here, the S-scheme BiOBr/CdS heterojunction with abundant oxygen vacancies (Vo-BiOBr/CdS) was prepared by the solvothermal method using ethylene glycol as a solvent. The photocatalytic activity of the heterojunction was investigated by degrading rhodamine B (RhB) and methylene blue (MB) under 5 W light-emitting diode (LED) light. Notably, the degradation rate of RhB and MB reached 97% and 93% in 60 min, respectively, which were better than that of BiOBr, CdS, and BiOBr/CdS. It was due to the construction of the heterojunction and the introduction of Vo, which facilitated the spatial separation of carriers and enhanced the visible-light harvest. The radical trapping experiment suggested that superoxide radicals (·O2−) acted as the main active species. Based on valence balance spectra, Mott-Schottky(M-S) spectra, and DFT theoretical calculations, the photocatalytic mechanism of the S-scheme heterojunction was proposed. This research provides a novel strategy for designing efficient photocatalysts by constructing S-scheme heterojunctions and introducing oxygen vacancies for solving environmental pollution.

Keywords: biobr cds; cds heterojunction; heterojunction; light; oxygen vacancies

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.