LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111)

Photo by akshayspaceship from unsplash

Surface atomic arrangement and physical properties of aluminum ultrathin layers on c-Si(111)-7 × 7 and hydrogen-terminated c-Si(111)-1 × 1 surfaces deposited using molecular beam epitaxy were investigated. X-ray photoelectron spectroscopy… Click to show full abstract

Surface atomic arrangement and physical properties of aluminum ultrathin layers on c-Si(111)-7 × 7 and hydrogen-terminated c-Si(111)-1 × 1 surfaces deposited using molecular beam epitaxy were investigated. X-ray photoelectron spectroscopy spectra were collected in two configurations (take-off angle of 0° and 45°) to precisely determine the surface species. Moreover, 3D atomic force microscopy (AFM) images of the air-exposed samples were acquired to investigate the clustering formations in film structure. The deposition of the Al layers was monitored in situ using a reflection high-energy electron diffraction (RHEED) experiments to confirm the surface crystalline structure of the c-Si(111). The analysis of the RHEED patterns during the growth process suggests the settlement of aluminum atoms in Al(111)-1 × 1 clustered formations on both types of surfaces. The surface electrical conductivity in both configurations was tested against atmospheric oxidation. The results indicate differences in conductivity based on the formation of various alloys on the surface.

Keywords: surface atomic; atomic arrangement; surface; arrangement aluminum

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.