LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pivotal Role of the Granularity Uniformity of the WO3 Film Electrode upon the Cyclic Stability during Cation Insertion/Extraction

Photo by ldxcreative from unsplash

Delicate design and precise manipulation of electrode morphology has always been crucial in electrochemistry. Generally, porous morphology has been preferred due to the fast kinetic transport characteristics of cations. Nevertheless,… Click to show full abstract

Delicate design and precise manipulation of electrode morphology has always been crucial in electrochemistry. Generally, porous morphology has been preferred due to the fast kinetic transport characteristics of cations. Nevertheless, more refined design details such as the granularity uniformity that usually goes along with the porosity regulation of film electrodes should be taken into consideration, especially in long-term cation insertion and extraction. Here, inorganic electrochromism as a special member of the electrochemical family and WO3 films as the most mature electrochromic electrode material were chosen as the research background. Two kinds of WO3 films were prepared by magnetron sputtering, one with a relatively loose morphology accompanied by nonuniform granularity and one with a compact morphology along with uniform particle size distribution, respectively. Electrochemical performances and cyclic stability of the two film electrodes were then traced and systematically compared. In the beginning, except for faster kinetic transport characters of the 50 W-deposited WO3 film, the two electrodes showed equivalent optical and electrochemical performances. However, after 5000 CV cycles, the 50 W-deposited WO3 film electrode cracked seriously. Strong stress distribution centered among boundaries of the nonuniform particle clusters together with the weak bonding among particles induced the mechanical damage. This discovery provides a more solid background for further delicate film electrode design.

Keywords: electrode; film electrode; film; granularity uniformity; wo3 film

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.