LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-Induced Au Catalyst Generation for Tailored ZnO Nanostructure Growth

Photo from wikipedia

ZnO nanostructures, semiconductors with attractive optical properties, are typically grown by thermal chemical vapor deposition for optimal growth control. Their growth is well investigated, but commonly results in the entire… Click to show full abstract

ZnO nanostructures, semiconductors with attractive optical properties, are typically grown by thermal chemical vapor deposition for optimal growth control. Their growth is well investigated, but commonly results in the entire substrate being covered with identical ZnO nanostructures. At best a limited, binary growth control is achieved with masks or lithographic processes. We demonstrate nanosecond laser-induced Au catalyst generation on Si(100) wafers, resulting in controlled ZnO nanostructure growth. Scanning electron and atomic force microscopy measurements reveal the laser pulse’s influence on the substrate’s and catalyst’s properties, e.g., nanoparticle size and distribution. The laser-induced formation of a thin SiO2-layer on the catalysts plays a key role in the subsequent ZnO growth mechanism. By tuning the irradiation parameters, the width, density, and morphology of ZnO nanostructures, i.e., nanorods, nanowires, and nanobelts, were controlled. Our method allows for maskless ZnO nanostructure designs locally controlled on Si-wafers.

Keywords: catalyst; growth; zno; zno nanostructure; laser induced

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.