InGaN quantum dots (QDs) have attracted significant attention as a promising material for high-efficiency micro-LEDs. In this study, plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow self-assembled InGaN QDs… Click to show full abstract
InGaN quantum dots (QDs) have attracted significant attention as a promising material for high-efficiency micro-LEDs. In this study, plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow self-assembled InGaN QDs for the fabrication of green micro-LEDs. The InGaN QDs exhibited a high density of over 3.0 × 1010 cm−2, along with good dispersion and uniform size distribution. Micro-LEDs based on QDs with side lengths of the square mesa of 4, 8, 10, and 20 μm were prepared. Attributed to the shielding effect of QDs on the polarized field, luminescence tests indicated that InGaN QDs micro-LEDs exhibited excellent wavelength stability with increasing injection current density. The micro-LEDs with a side length of 8 μm showed a shift of 16.9 nm in the peak of emission wavelength as the injection current increased from 1 A/cm2 to 1000 A/cm2. Furthermore, InGaN QDs micro-LEDs maintained good performance stability with decreasing platform size at low current density. The EQE peak of the 8 μm micro-LEDs is 0.42%, which is 91% of the EQE peak of the 20 µm devices. This phenomenon can be attributed to the confinement effect of QDs on carriers, which is significant for the development of full-color micro-LED displays.
               
Click one of the above tabs to view related content.