LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive

Photo from wikipedia

Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve… Click to show full abstract

Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO4 electrolyte with 2 g·L−1 Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm−2, 5 mAh·cm−2). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO2 full battery is up to 88.6% after 1000 cycles.

Keywords: highly reversible; anodes hydrophobic; electrolyte additive; reversible anodes; interface; hydrophobic interface

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.