Conductive polymer composites (CPCs) have shown potential for structural health monitoring applications based on repeated findings of irreversible transducer electromechanical property change due to fatigue. In this research, a high-fidelity… Click to show full abstract
Conductive polymer composites (CPCs) have shown potential for structural health monitoring applications based on repeated findings of irreversible transducer electromechanical property change due to fatigue. In this research, a high-fidelity stochastic modeling framework is explored for predicting the electromechanical properties of spherical element-based CPC materials at bulk scales. CPC dogbone specimens are manufactured via casting and their electromechanical properties are characterized via uniaxial tensile testing. Model parameter tuning, demonstrated in previous works, is deployed for improved simulation fidelity. Modeled predictions are found in agreement with experimental results and compared to predictions from a popular analytical model in the literature.
               
Click one of the above tabs to view related content.