LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Features of Copper and Gold Nanoparticle Translocation in Petroselinum crispum Segments

Photo by teveir from unsplash

The application of metal nanoparticles in industry and medicine results in their release into the environment, which can have a negative impact on human health. The effects of gold (AuNPs)… Click to show full abstract

The application of metal nanoparticles in industry and medicine results in their release into the environment, which can have a negative impact on human health. The effects of gold (AuNPs) and copper (CuNPs) nanoparticles at the concentration range of 1–200 mg/L on parsley (Petroselinum crispum) under conditions of root exposure and their translocation in roots and leaves were investigated in a 10-day experiment. The content of copper and gold in soil and plant segments was determined using ICP-OES and ICP-MS techniques, while the morphology of nanoparticles was analyzed using transmission electron microscopy. Differences in the nanoparticle uptake and translocation were observed: CuNPs mainly accumulated in soil (4.4–465 mg/kg), while accumulation in the leaves were at the control level. AuNPs mainly accumulated in soil (0.04–108 mg/kg), followed by roots (0.05–45 mg/kg) and leaves (0.16–53 mg/kg). The influence of AuNPs and CuNPs on the biochemical parameters of parsley was on the content of carotenoids, the levels of chlorophyll, and antioxidant activity. Application of CuNPs even at the lowest concentration led to a significant reduction in carotenoids and total chlorophyll content. AuNPs at low concentrations promoted an increase in the content of carotenoids; however, they also significantly reduced it at concentrations higher than 10 mg/L. To our knowledge, this is the first study of the effect of metal nanoparticles on parsley.

Keywords: translocation; copper gold; petroselinum crispum

Journal Title: Nanomaterials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.