LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO2 Batteries

Photo from academic.microsoft.com

Aqueous rechargeable zinc-manganese dioxide (Zn-MnO2) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and… Click to show full abstract

Aqueous rechargeable zinc-manganese dioxide (Zn-MnO2) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO2 batteries. Here, we report a new material consisting of hollow MnO2 nanospheres, which can be used for aqueous Zn-MnO2 batteries. The hollow MnO2 nanospheres can achieve high specific capacity up to ~405 mAh g−1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO2 enables long-term cycling stability for the aqueous Zn-MnO2 batteries. The excellent performance of the hollow MnO2 nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

Keywords: mno2 batteries; mno2 nanospheres; hollow structured; hollow mno2; batteries hollow; mno2

Journal Title: Nanomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.