LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries

Photo by akshayspaceship from unsplash

Indium phosphide quantum dots (QDs) passivated with zinc sulphide in a core/shell architecture (InP/ZnS) with different surface chemistries were introduced to RAW 264.7 murine “macrophage-like” cells to understand their potential… Click to show full abstract

Indium phosphide quantum dots (QDs) passivated with zinc sulphide in a core/shell architecture (InP/ZnS) with different surface chemistries were introduced to RAW 264.7 murine “macrophage-like” cells to understand their potential toxicities. The InP/ZnS quantum dots were conjugated with an oligonucleotide, a carboxylic acid, or an amino-polyethylene glycol ligand, and cell viability and cell proliferation were investigated via a metabolic assay. Membrane integrity was measured through the production of lactate dehydrogenase. Fluorescence microscopy showed cellular uptake. All quantum dots exhibited cytotoxic behaviour less than that observed from cadmium- or lead-based quantum dots; however, this behaviour was sensitive to the ligands used. In particular, the amino-polyethylene glycol conjugated quantum dots proved to possess the highest cytotoxicity examined here. This provides quantitative evidence that aqueous InP/ZnS quantum dots can offer a safer alternative for bioimaging or in therapeutic applications.

Keywords: inp zns; zns quantum; surface chemistries; different surface; quantum dots

Journal Title: Nanomaterials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.