LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres

Photo from wikipedia

Monolayer nano-sphere arrays attract great research interest as they can be used as templates to fabricate various nano-structures. Plasma etching, and in particular high-frequency plasma etching, is the most commonly… Click to show full abstract

Monolayer nano-sphere arrays attract great research interest as they can be used as templates to fabricate various nano-structures. Plasma etching, and in particular high-frequency plasma etching, is the most commonly used method to obtain non-close-packed monolayer arrays. However, the method is still limited in terms of cost and efficiency. In this study, we demonstrate that a low frequency (40 kHz) plasma etching system can be used to fabricate non-close-packed monolayer arrays of polystyrene (PS) nano-spheres with smooth surfaces and that the etching rate is nearly doubled compared to that of the high-frequency systems. The study reveals that the low-frequency plasma etching process is dominated by a thermal evaporation etching mechanism, which is different from the atom-scale dissociation mechanism that underlines the high-frequency plasma etching. It is found that the polystyrene nano-sphere size can be precisely controlled by either adjusting the etching time or power. Through introducing oxygen as the assisting gas in the low frequency plasma etching system, we achieved a coalesced polystyrene nano-sphere array and used it as a template for metal-assisted chemical etching. We demonstrate that the method can significantly improve the aspect ratio of the silicon nanowires to over 200 due to the improved flexure rigidity.

Keywords: plasma; monolayer; frequency; plasma etching; polystyrene nano; non close

Journal Title: Nanomaterials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.