LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Review on Quasi One-Dimensional CdSe Nanomaterials: Synthesis and Application in Photodetectors

Photo from wikipedia

During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties.… Click to show full abstract

During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties. In this review, recent advancements on diverse synthesis methods of 1D CdSe nanomaterials and the application in photodetectors have been illustrated in detail. First, several bottom-up synthesis methods of 1D CdSe nanomaterials have been introduced, including the vapor-liquid-solid method, the solution-liquid-solid method, and electrochemical deposition, etc. Second, the discussion on photodetectors based on 1D CdSe nanomaterials has been divided into three parts, including photodiodes, photoconductors, and phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect), which can be utilized to enhance the performance of photodetectors, have also been elaborated. Finally, some major challenges and opportunities towards the practical integration and application of 1D CdSe nanomaterials in photodetectors have been discussed, which need to be further investigated in the future.

Keywords: application photodetectors; one dimensional; cdse; quasi one; cdse nanomaterials

Journal Title: Nanomaterials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.