LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Impact of Population Variation in the Analysis of microRNA Target Sites

Photo from wikipedia

The impact of population variation in the analysis of regulatory interactions is an underdeveloped area. MicroRNA target recognition occurs via pairwise complementarity. Consequently, a number of computational prediction tools have… Click to show full abstract

The impact of population variation in the analysis of regulatory interactions is an underdeveloped area. MicroRNA target recognition occurs via pairwise complementarity. Consequently, a number of computational prediction tools have been developed to identify potential target sites that can be further validated experimentally. However, as microRNA target predictions are done mostly considering a reference genome sequence, target sites showing variation among populations are neglected. Here, we studied the variation at microRNA target sites in human populations and quantified their impact in microRNA target prediction. We found that African populations carry a significant number of potential microRNA target sites that are not detectable in the current human reference genome sequence. Some of these targets are conserved in primates and only lost in Out-of-Africa populations. Indeed, we identified experimentally validated microRNA/transcript interactions that are not detected in standard microRNA target prediction programs, yet they have segregating target alleles abundant in non-European populations. In conclusion, we show that ignoring population diversity may leave out regulatory elements essential to understand disease and gene expression, particularly neglecting populations of African origin.

Keywords: variation; target sites; target; microrna target; population

Journal Title: Non-Coding RNA
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.