LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resistant Maltodextrin Ameliorates Altered Hepatic Lipid Homeostasis via Activation of AMP-Activated Protein Kinase in a High-Fat Diet-Fed Rat Model

Photo from wikipedia

Many studies have shown that resistant maltodextrin (RMD) possesses blood cholesterol lowering and anti-obesity effects. In order to investigate the effect of RMD on lipid metabolism in the liver, rats… Click to show full abstract

Many studies have shown that resistant maltodextrin (RMD) possesses blood cholesterol lowering and anti-obesity effects. In order to investigate the effect of RMD on lipid metabolism in the liver, rats were fed with a high-fat (HF) diet for 7 weeks to induce hyperlipidemia and fatty liver. Normal control rats were fed with a normal diet. HF-diet-fed rats were treated with 5% RMD for 8 weeks. The results showed that the increased plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, the increased hepatic triglyceride and total cholesterol levels, and fatty liver in HF-diet-fed rats were significantly decreased after supplementation with RMD. Supplementation with RMD significantly (1) induced AMP-activated protein kinase (AMPK) phosphorylation; (2) inhibited the activities of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and HMG-CoA reductase (HMGCR); (3) suppressed the protein expression of peroxisome proliferator activated receptor (PPAR)-γ; (4) increased β-oxidation of fatty acids by increasing the protein expression carnitine palmitoyl transferase 1α (CPT-1α) in the livers of HF-diet-fed rats. Taken together, supplementation of RMD was capable of inhibiting lipogenic enzyme activities and inducing fatty acid β-oxidation through increasing AMPK activation, thereby reducing lipid accumulation in the liver.

Keywords: fat diet; activated protein; high fat; diet fed; resistant maltodextrin; amp activated

Journal Title: Nutrients
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.