Advanced glycation end products (AGEs) promote the development of diabetic complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE) sequester AGEs and protect against RAGE-mediated diabetic complications.… Click to show full abstract
Advanced glycation end products (AGEs) promote the development of diabetic complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE) sequester AGEs and protect against RAGE-mediated diabetic complications. We investigated the effect of an overnight fast on circulating metabolic substrates, hormones, AGEs, and sRAGE isoforms in 26 individuals with type 1 diabetes (T1DM). Blood was collected from 26 young (18–30 years) T1DM patients on insulin pumps before and after an overnight fast. Circulating AGEs were measured via LC-MS/MS and sRAGE isoforms were analyzed via ELISA. Glucose, insulin, glucagon, and eGFRcystatin-c decreased while cortisol increased following the overnight fast (p < 0.05). AGEs (CML, CEL, 3DG-H, MG-H1, and G-H1) decreased (21–58%, p < 0.0001) while total sRAGE, cleaved RAGE (cRAGE), and endogenous secretory RAGE (esRAGE) increased (22–24%, p < 0.0001) following the overnight fast. The changes in sRAGE isoforms were inversely related to MG-H1 (rho = −0.493 to −0.589, p < 0.05) and the change in esRAGE was inversely related to the change in G-H1 (rho = −0.474, p < 0.05). Multiple regression analyses revealed a 1 pg/mL increase in total sRAGE, cRAGE, or esRAGE independently predicted a 0.42–0.52 nmol/L decrease in MG-H1. Short-term energy restriction via an overnight fast resulted in increased sRAGE isoforms and may be protective against AGE accumulation.
               
Click one of the above tabs to view related content.