LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events

Photo by sammiechaffin from unsplash

Background: This study investigated the association of omega-3 polyunsaturated fatty acids (n-3 PUFA) within erythrocyte membranes and cardiovascular risk assessed by three different estimates. Methods: Inclusion criteria were individuals of… Click to show full abstract

Background: This study investigated the association of omega-3 polyunsaturated fatty acids (n-3 PUFA) within erythrocyte membranes and cardiovascular risk assessed by three different estimates. Methods: Inclusion criteria were individuals of both sexes, 30 to 74 years, with at least one cardiovascular risk factor, and no previous cardiovascular events (n = 356). Exclusion criteria were individuals with acute or chronic severe diseases, infectious diseases, pregnant, and/or lactating women. Plasma biomarkers (lipids, glucose, and C-reactive protein) were analyzed, and nineteen erythrocyte membrane fatty acids (FA) were identified. The cardiovascular risk was estimated by Framingham (FRS), Reynolds (RRS), and ACC/AHA-2013 Risk Scores. Three patterns of FA were identified (Factor 1, poor in n-3 PUFA), (Factor 2, poor in PUFA), and (Factor 3, rich in n-3 PUFA). Results: Total cholesterol was inversely correlated with erythrocyte membranes C18:3 n-3 (r = −0.155; p = 0.004), C22:6 n-3 (r = −0.112; p = 0.041), and total n-3 (r = −0.211; p < 0.001). Total n-3 PUFA was associated with lower cardiovascular risk by FRS (OR = 0.811; 95% CI= 0.675–0.976). Regarding RRS, Factor 3 was associated with 25.3% lower odds to have moderate and high cardiovascular risk (OR = 0.747; 95% CI = 0.589–0.948). The ACC/AHA-2013 risk score was not associated with isolated and pooled FA. Conclusions: n-3 PUFA in erythrocyte membranes are independent predictors of low-risk classification estimated by FRS and RRS, which could be explained by cholesterol-lowering effects of n-3 PUFA.

Keywords: pufa; risk; fatty acids; cardiovascular risk; erythrocyte membranes

Journal Title: Nutrients
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.