LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Citrus Flavonoid Hesperetin Encounters Diabetes-Mediated Alzheimer-Type Neuropathologic Changes through Relieving Advanced Glycation End-Products Inducing Endoplasmic Reticulum Stress

Photo by kellysikkema from unsplash

The present study investigates whether hesperetin, a citrus flavonoid, can encounter advanced glycation end-product (AGE)-induced Alzheimer’s disease-like pathophysiological changes with the underlying mechanisms. SH-SY5Y cells pretreated with hesperetin before stimulation… Click to show full abstract

The present study investigates whether hesperetin, a citrus flavonoid, can encounter advanced glycation end-product (AGE)-induced Alzheimer’s disease-like pathophysiological changes with the underlying mechanisms. SH-SY5Y cells pretreated with hesperetin before stimulation with AGEs (200 μg/mL) were assessed in the following experiments. Hesperetin (40 μmol/L) elevated the reduced cell viability induced by AGEs. Hesperetin ameliorated reactive oxygen species overproduction and the downregulation of superoxide dismutase, glutathione peroxidase, and catalase, triggered by AGEs. Amyloid precursor protein upregulation, accompanied by the increased production of Aβ, caused by AGEs, was reversed by hesperetin. However, hesperetin lowered β-site APP-cleaving enzyme 1 expression, inducing insulin-degrading and neprilysin expression. In addition, hesperetin downregulated the expressions of the AGEs-induced endoplasmic reticulum (ER) stress proteins, including 78-kDa glucose-regulated protein and C/EBP homologous protein, and lowered the phosphorylation of protein kinase R-like ER kinase and activating transcription factor 4. Hesperetin-pretreated cells had a minor apoptotic DNA fragmentation. Hesperetin is able to upregulate Bcl-2 protein expression, downregulate Bax expression, and decrease caspase-12/-9/-3 activity as well, indicating that it inhibits ER stress-mediated neuronal apoptosis. There is a similar effect between hesperetin and positive rosiglitazone control against Aβ aggravation of SH-SY5Y cell injury induced by AGEs. Thus, hesperetin might be a potential agent for treating glycation-induced Aβ neurotoxicity.

Keywords: endoplasmic reticulum; reticulum stress; hesperetin; citrus flavonoid; glycation end; advanced glycation

Journal Title: Nutrients
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.