Polyunsaturated fatty acid (PUFA) intake is generally associated with better renal function, while the association of monounsaturated fatty acids (MUFAs) remains unconfirmed. Mendelian randomization (MR) analysis was used to obtain… Click to show full abstract
Polyunsaturated fatty acid (PUFA) intake is generally associated with better renal function, while the association of monounsaturated fatty acids (MUFAs) remains unconfirmed. Mendelian randomization (MR) analysis was used to obtain unconfounded estimates of the causal association of dietary intake and genetically determined serum PUFA and MUFA levels with measures of renal function. Data from participants of the National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2010 were used. Data from the largest genome-wide association studies (GWAS) on MUFAs, PUFAs, eGFR, and chronic kidney disease (CKD) were analysed for the entire sample. A total of 16,025 participants were included. eGFR improved across increasing quartiles of total PUFA intake from 86.3 ± 0.5 (Q1) to 96.2 ± 0.5 mL/min/1.73 m² (Q4), (p < 0.001). Conversely, there was no association between MUFA intake and measures of renal function (all p > 0.21). In multivariable models, the top quartile of PUFA intake had a 21% lower risk for CKD, but there was no significant association between CKD risk and MUFA intake. Genetically determined serum MUFA (heptadecenoate (17:1), myristoleic acid (14:1), and palmitoleic acid (16:1)) and PUFA (α-linolenic acid and eicosapentaenoic acid) concentrations had no significant association with eGFR and CKD risk. Additionally, no association was found in the analyses stratified by diabetes status. Higher dietary PUFA intake is associated with lower risk of CKD, while there was no association with serum levels of MUFAs or PUFAs. Additional studies including clinical trials are warranted.
               
Click one of the above tabs to view related content.