Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The… Click to show full abstract
Dietary phenolic compounds must be released from the food matrix in the gastrointestinal tract to play a bioactive role, the release of which is interfered with by food structure. The release of phenolics (unbound and bound) of cold and hot extruded noodles enriched with phenolics (2.0%) during simulated in vitro gastrointestinal digestion was investigated. Bound phenolic content and X-ray diffraction (XRD) analysis were utilized to characterize the intensity and manner of starch-phenolic complexation during the preparation of extruded noodles. Hot extrusion induced the formation of more complexes, especially the V-type inclusion complexes, with a higher proportion of bound phenolics than cold extrusion, contributing to a more controlled release of phenolics along with slower starch digestion. For instance, during simulated small intestinal digestion, less unbound phenolics (59.4%) were released from hot extruded phenolic-enhanced noodles than from the corresponding cold extruded noodles (68.2%). This is similar to the release behavior of bound phenolics, that cold extruded noodles released more bound phenolics (56.5%) than hot extruded noodles (41.9%). For noodles extruded with rutin, the release of unbound rutin from hot extruded noodles and cold extruded noodles was 63.6% and 79.0%, respectively, in the small intestine phase, and bound rutin was released at a much lower amount from the hot extruded noodles (55.8%) than from the cold extruded noodles (89.7%). Hot extrusion may allow more potential bioaccessible phenolics (such as rutin), further improving the development of starchy foods enriched with controlled phenolics.
               
Click one of the above tabs to view related content.