LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay

Photo by maiq from unsplash

The fungus Gnomoniopsis smithogilvyi is a significant threat to the production of sweet chestnut (Castanea sativa) nuts in Australia and worldwide. The pathogen causes nut rot, which leads to substantial… Click to show full abstract

The fungus Gnomoniopsis smithogilvyi is a significant threat to the production of sweet chestnut (Castanea sativa) nuts in Australia and worldwide. The pathogen causes nut rot, which leads to substantial production losses. Early and accurate diagnosis of the disease is essential to delineate and implement control strategies. A specific and sensitive multiplex PCR was developed based on the amplification of three barcode sequences of G. smithogilvyi. The assay reliability was enhanced by including the amplification of a host gene as an internal control. Primers were thoroughly evaluated in silico before assessing them in vitro. Primer annealing temperature and concentration were optimised to enhance the assay sensitivity and specificity. The assay detection limit ranged between 0.1 and 1.0 pg (5 and 50 fg/μL) of genomic DNA per reaction. No cross-reactivity was observed with genomic DNA from closely and distantly related fungal species. We also characterised Australian G. smithogilvyi isolates phenotypically and genotypically and found significant differences in morphologic and virulence traits of the isolates. An understanding of the virulence of G. smithogilvyi and the availability of a reliable and accurate diagnostic technique will enable earlier detection of the pathogen, which will contribute to effective control strategies for the disease.

Keywords: chestnut; smithogilvyi; gnomoniopsis smithogilvyi; detection; multiplex pcr

Journal Title: Pathogens
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.