Group B Streptococcus (GBS) colonizes the vaginal and rectal mucosa in a substantial proportion of healthy women, and GBS is a risk factor for GBS-associated adverse birth outcomes, such as… Click to show full abstract
Group B Streptococcus (GBS) colonizes the vaginal and rectal mucosa in a substantial proportion of healthy women, and GBS is a risk factor for GBS-associated adverse birth outcomes, such as bacterial infection, in neonates. Whether changes in the gut microbiota of GBS-infected pregnant women are associated with maternal complete blood cell count (CBC) and neonatal blood-gas analysis is unknown. To explore the relationship between the intestinal microecological composition of pregnant women and maternal blood routine and neonatal blood-gas analysis, we collected intestinal microecology samples of 26 pregnant women in clinic. They were divided into a positive group(GBS positive,GBS +) and a negative group (GBS negative, GBS-), with 12 in the positive group and 14 in the negative group. 16S rRNA gene sequencing was used to examine the gut microbiota profile from a fecal sample of pregnant women. CBC was carried out in enrolled pregnant women and umbilical arterial blood-gas analysis (UABGA)was conducted for analysis of intestinal microbiota composition, maternal blood routine and neonatal blood gas. Our results showed significant differences in the total number of organisms and microbial diversity of intestinal microbiota between healthy pregnant women and GBS-positive pregnant women. Particularly, abundances of Lentisphaerae, Chlorobi, Parcubacteria, Chloroflexi, Gemmatimonadetes, Acidobacteria, Fusobacteria and Fibrobacteres were only detected in participants with GBS colonization. Blood-gas analysis revealed that neonates born to mothers with GBS colonization had significantly higher fractions of carboxyhemoglobin (FCOHb) and lower methemoglobin (FMetHb), and abundances of OTU80, OTU122, OTU518 and OTU375 were associated with blood-gas indicators, such as carboxyhemoglobin, methemoglobin, PCO2, PH and ABE. Interestingly, there were significant correlations between OTU levels and inflammatory indexes in pregnant women with GBS infection. Together, this study revealed for the first time that altered gut microbiota compositions are related to the inflammatory state in GBS-positive pregnant women and neonatal blood-gas indicators. GBS colonization may lead to significant changes in the gut microbiome, which might be involved in the pathogenesis of the maternal inflammatory state and neonatal blood gas abnormalities.
               
Click one of the above tabs to view related content.