LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silencing of Thrips palmi UHRF1BP1 and PFAS Using Antisense Oligos Induces Mortality and Reduces Tospovirus Titer in Its Vector

Photo by nchiamori from unsplash

Thrips palmi (Thysanoptera: Thripidae) is an important pest of vegetables, legumes, and ornamentals. In addition, it transmits several plant viruses. T. palmi genes associated with innate immunity, endocytosis-related pathways, and… Click to show full abstract

Thrips palmi (Thysanoptera: Thripidae) is an important pest of vegetables, legumes, and ornamentals. In addition, it transmits several plant viruses. T. palmi genes associated with innate immunity, endocytosis-related pathways, and cuticular development are highly enriched in response to Groundnut bud necrosis orthotospovirus (GBNV, genus Orthotospovirus, family Tospoviridae) infection. As the previous transcriptomic study suggested the involvement of T. palmi UHRF1BP1 and PFAS in GBNV infection, these two genes were targeted for silencing using antisense oligonucleotides (ASOs), and the effects on thrips’ fitness and virus acquisition were observed. Phosphorothioate modification of ASOs was carried out by replacing the nonbridging oxygen atom with a sulfur atom at the 3′ position to increase nuclease stability. The modified ASOs were delivered orally through an artificial diet. Exposure to ASOs reduced the target mRNA expression up to 2.70-fold optimally. Silencing of T. palmi UHRF1BP1 and PFAS induced 93.33% mortality that further increased up to 100% with an increase in exposure. Silencing of T. palmi UHRF1BP1 and PFAS also produced morphological deformities in the treated T. palmi. GBNV titer in T. palmi significantly declined post-exposure to ASOs. This is the first-ever report of silencing T. palmi UHRF1BP1 and PFAS using modified ASO to induce mortality and impair virus transmission in T. palmi. T. palmi UHRF1BP1 and PFAS would be novel genetic targets to manage thrips and restrict the spread of tospovirus.

Keywords: thrips palmi; using antisense; mortality; uhrf1bp1 pfas; palmi uhrf1bp1

Journal Title: Pathogens
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.