Yersiniosis is an important zoonotic disease; however, data are scarce on the resistance of enteropathogenic yersiniae, especially that of Y. pseudotuberculosis. Minimum inhibitory concentrations (MIC) of 21 antibiotics and 3… Click to show full abstract
Yersiniosis is an important zoonotic disease; however, data are scarce on the resistance of enteropathogenic yersiniae, especially that of Y. pseudotuberculosis. Minimum inhibitory concentrations (MIC) of 21 antibiotics and 3 essential oils (EOs) were determined by broth microdilution for Y. enterocolitica bioserotype 4/O:3 strains isolated from domestic swine (n = 132) and Y. pseudotuberculosis strains isolated from wild boars (n = 46). For 15 of 21 antibiotics, statistically significant differences were found between MIC values of Y. enterocolitica and Y. pseudotuberculosis. While Y. enterocolitica was more resistant to amoxiclav, ampicillin, cefotaxime, cefuroxime, gentamicin, imipenem, meropenem, tetracycline, tobramycin, and trimethoprim, Y. pseudotuberculosis was more resistant to cefepime, ceftazidime, colistin, erythromycin, and nitrofurantoin. Statistically significant differences were found between various essential oils (p < 0.001) and species (p < 0.001). The lowest MICs for multiresistant Y. enterocolitica (n = 12) and Y. pseudotuberculosis (n = 12) were obtained for cinnamon (median 414 and 207 μg/mL, respectively) and oregano EOs (median 379 and 284 μg/mL), whereas thyme EO showed significantly higher MIC values (median 738 and 553 μg/mL; p < 0.001). There was no difference between Y. enterocolitica strains of plant (1A) and animal (4/O:3) origin (p = 0.855). The results show that Y. enterocolitica is generally more resistant to antimicrobials than Y. pseudotuberculosis.
               
Click one of the above tabs to view related content.