(1) Background: Malaria is a public health problem worldwide. Despite global efforts to control it, antimalarial drug resistance remains a great challenge. In 2009, our team identified, for the first… Click to show full abstract
(1) Background: Malaria is a public health problem worldwide. Despite global efforts to control it, antimalarial drug resistance remains a great challenge. In 2009, our team identified, for the first time in Brazil, chloroquine (CQ)-susceptible Plasmodium falciparum parasites in isolates from the Brazilian Amazon. The present study extends those observations to include survey samples from 2010 to 2018 from the Amazonas and Acre states for the purpose of tracking pfcrt molecular changes in P. falciparum parasites. (2) Objective: to investigate SNPs in the P. falciparum gene associated with chemoresistance to CQ (pfcrt). (3) Methods: Sixty-six P. falciparum samples from the Amazonas and Acre states were collected from 2010 to 2018 in patients diagnosed at the Reference Research Center for Treatment and Diagnosis of Malaria (CPD-Mal/Fiocruz), FMT-HVD and Acre Health Units. These samples were subjected to PCR and DNA Sanger sequencing to identify mutations in pfcrt (C72S, M74I, N75E, and K76T). (4) Results: Of the 66 P. falciparum samples genotyped for pfcrt, 94% carried CQ-resistant genotypes and only 4 showed a CQ pfcrt sensitive-wild type genotype, i.e., 1 from Barcelos and 3 from Manaus. (5) Conclusion: CQ-resistant P. falciparum populations are fixed, and thus, CQ cannot be reintroduced in malaria falciparum therapy.
               
Click one of the above tabs to view related content.