LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gemcitabine Direct Electrochemical Detection from Pharmaceutical Formulations Using a Boron-Doped Diamond Electrode

Photo from wikipedia

The development of fast and easy-to-use methods for gemcitabine detection is of great interest for pharmaceutical formulation control in both research laboratories and hospitals. In this study, we report a… Click to show full abstract

The development of fast and easy-to-use methods for gemcitabine detection is of great interest for pharmaceutical formulation control in both research laboratories and hospitals. In this study, we report a simple, fast and direct electrochemical method for gemcitabine detection using a boron-doped diamond electrode. The electrochemical oxidation of gemcitabine on a boron-doped diamond electrode was found to be irreversible in differential pulse voltammetry, and scan rate influence studies demonstrated that the process is diffusion-controlled. The influence of the pH and supporting electrolytes were also tested, and the optimized differential pulse voltammetry method was linear in the range of 2.5–50 μg/mL, with a detection limit of 0.85 μg/mL in phosphate-buffered saline (pH 7.4; 0.1 M). An amperometric method was also optimized for gemcitabine detection. The linear range of the method was 0.5–65 μg/mL in phosphate-buffered saline of pH 7.4 as well as pH 5.5, the limit of detection being 0.15 μg/mL. The optimized differential pulse voltammetry and amperometric detection strategies were successfully applied to pharmaceutical formulations, and the results were compared to those obtained by high-performance liquid chromatography and UV-Vis spectrophotometry with good correlations.

Keywords: boron doped; doped diamond; detection; diamond electrode

Journal Title: Pharmaceuticals
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.