LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and Evaluation of Quercetin Nanoemulsion: A Delivery System with Improved Bioavailability and Therapeutic Efficacy in Diabetes Mellitus

Photo by charliegallant from unsplash

The current study was intended to fabricate and evaluate ultrasonically assisted quercetin nanoemulsion (Que-NE) for improved bioavailability and therapeutic effectiveness against diabetes mellitus in rats. Ethyl oleate, Tween 20, and… Click to show full abstract

The current study was intended to fabricate and evaluate ultrasonically assisted quercetin nanoemulsion (Que-NE) for improved bioavailability and therapeutic effectiveness against diabetes mellitus in rats. Ethyl oleate, Tween 20, and Labrasol were chosen as oil, surfactant, and cosurfactant, respectively. Box–Behnken design (BBD) was employed to study the influence of process variables such as % surfactant and cosurfactant mixture (Smix) (5 to 7%), % amplitude (20–30%) and sonication time (2.5–7.5 min) on droplet size, polydispersibility index (PDI), and % entrapment efficiency (%EE) were studied. The optimization predicted that 9% Smix at 25% amplitude for 2.5 min would produce Que-NE with a droplet size of 125.51 nm, 0.215 PDI, and 87.04% EE. Moreover, the optimized Que-NE exhibited appreciable droplet size and PDI when stored at 5, 30, and 40 °C for 45 days. Also, the morphological characterization by transmission electron microscope (TEM) indicated the spherical shape of the optimized nanoemulsion. Furthermore, the Que-NE compared to pure quercetin exhibited superior release and enhanced oral bioavailability. The streptozocin-induced antidiabetic study in rats revealed that the Que-NE had remarkable protective and therapeutic properties in managing body weight, blood glucose level, lipid profile, and tissue injury markers, alongside the structure of pancreatic β-cells and hepatocytes being protected. Thus, the developed Que-NE could be of potential use as a substitute strategy for diabetes.

Keywords: improved bioavailability; bioavailability; nanoemulsion; quercetin nanoemulsion; diabetes mellitus; bioavailability therapeutic

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.